### **REVIEW:**

### Substitution Nucleophilic S<sub>N</sub>

Nucleophile seek positive charge Base seeks H+

possible negative charge

$$R-X + : Nu \longrightarrow R-Nu + : X$$

$$M^{+}$$
counter ion

Never leaving groups: (negative charge not stabilized):

Fluorine, though electronegative, is a bad leaving groups as it is small and poorly solvated.

### Good leaving groups

-OH or -OR can also act as leaving groups but they must first be transformed into H<sub>2</sub>O or HOR by a strong acid

Comparison of S<sub>N</sub>2 reactions vs S<sub>N</sub>1 reactions

| Characteristics                | S <sub>N</sub> 2 reactions                                  | S <sub>N</sub> 1 Reactions                       |
|--------------------------------|-------------------------------------------------------------|--------------------------------------------------|
| Mechanism                      | Concerted (one step)                                        | Stepwise (two steps)                             |
| Intermediate formation         | No intermediate                                             | Carbocation intermdiate                          |
| Rate dependent                 | Dependent on the concentration of nucleophile and substrate | Dependent on concentration of substrate          |
| Stereochemistry                | Stereospecific (with inversion of configuration)            | Not stereospecific (forms racemic mixture)       |
| Substrate (Starting Material)* | Works for 1° and 2° (but not 3°)                            | Works for 3° (very occasionally 2° but never 1°) |
| Nucleophile                    | Charged/strong                                              | Neutral/weak                                     |

<sup>\*</sup>NOTE: No S<sub>N</sub> will occur on C=C-X

Types of alkyl halide or Haloalkane

| Type           | Example                               |
|----------------|---------------------------------------|
| Primary (1°)   | $CH_3CH_2Br = Br$                     |
| Secondary (2°) | CH <sub>3</sub> CHBrCH <sub>3</sub> = |
| Tertiary (3°)  | $(CH_3)_3CBr =Br$                     |

### Example 1)

### Example 2)

$$-$$
CI  $\xrightarrow{\text{NaOH}}$   $\xrightarrow{\text{OH}}$  +  $\text{Na}^{\dagger}$   $\xrightarrow{\text{CI}}$ 

**Note:** in principle this reaction (Sn1) works but will give low yield because of side reaction (elimination reaction)

### Example 3)

The above reaction will not occur unless hydrogen cyanide is converted into sodium cyanide using NaOH.

The product is acetonitrile, a common laboratory solvent.

### Example 4)

# Example 5) $H_3C-I + H_3C-O-H$ Forward rxn will not occur H + C-I + C-O-H $\delta + H + \delta$ Weakest bond Two possibilities H + C-O-H + C-O-H H + C-O

Hydrogen iodide is a strong acid and will drive the reverse reaction, meaning the forward reaction will not occur.

In order to make the above reaction occur, a stronger base (such as sodium methoxide) must be used to drive the forward reaction.

### Example 6)

A carbon attached to a double bond cannot undergo a substitution reaction The carbon with the leaving group must be sp<sup>3</sup> to undergo a substitution reaction

### Example 7)

 $\overset{\bigcirc}{\rm OH}$  is never a good leaving group

## BUT Works with Acid as $S_N 1$ Mechanism

### Mechanism:

### Example 8)

-OCH<sub>3</sub> is a strong, negatively charged nucleophile, so it favors a S<sub>N</sub>2 mechanism (inversion of stereochemistry)

### Example 9)

Tertiary
Alkyl
Halide

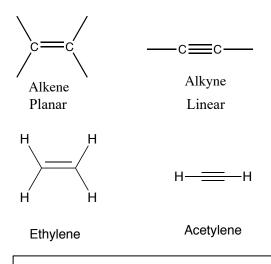
Br

NaOCH3

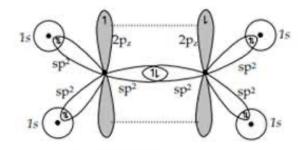
Sterically crowded - reaction is very slow

CH<sub>3</sub>OH

H<sub>2</sub>SO<sub>4</sub>, 
$$\Delta$$

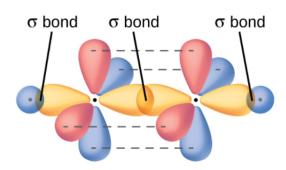

Diastereomers

sp<sup>2</sup>, planar


Will get a mixture of diastereomers Note: the products are achiral

### **Alkenes and Alkynes Nomenclature**

Alkene = double bond = olefin (oleum facere = to make oil) Alkyne = triple bond = acetylene (as functional group, not compound)




Simplest Alkene and Alkyne Possible



5

Orbital picture of ethylene

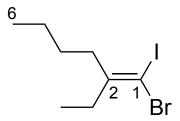


Orbital picture of acetylene © chem.libretexts.org

### Alkene Nomenclature

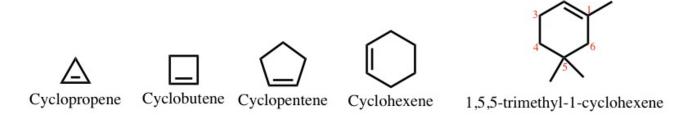
- 1. Find longest chain
- 2. Number from end to contain both ends of C=C and give lowest number to 1st C of C=C

6


3. Change "ane" to "ene" precede with number to indicate first double bond position

Below are two structural isomers of 1-butene

$$H_3C$$
 $CH_3$ 
 $H_3C$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CIS-2$ -butene

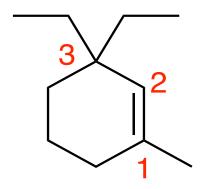

**Note:** no free rotation around the double bond. No way to interconvert between the *cis* and *trans* isomer without a chemical reaction.

### **Example:**



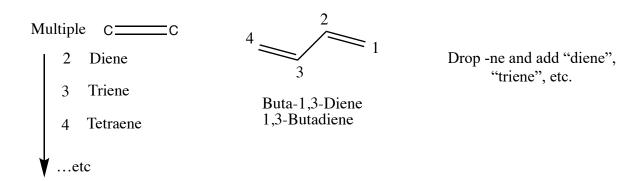
# 1-bromo-2-ethyl-1-iodo-1-hexene

### **Nomenclature of Cycloalkenes**

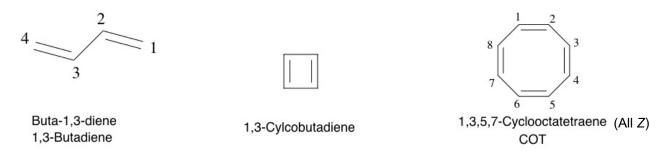



**Rule**: Number the cycloalkene such that the double bond is between C1 and C2 and that the first substituent has the lowest number possible.

### **Example:**

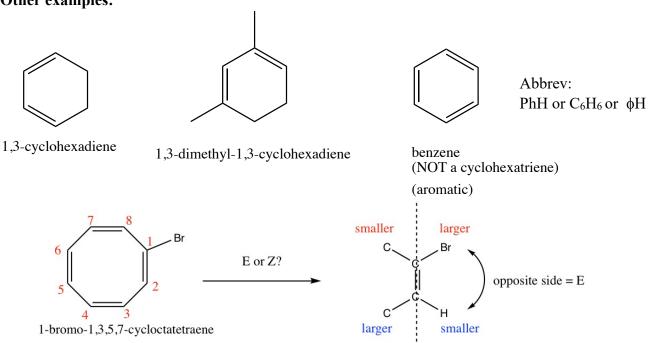

# 1,5,5-trimethyl-1-cyclohexene

### **Example:**

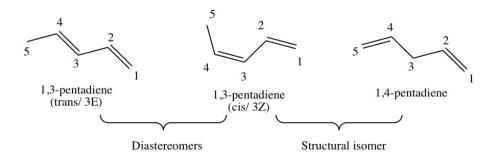



3,3-diethyl-1methyl-1-cyclohexene or 3,3-diethyl-1methylcyclohex-1-ene

### Nomenclature of alkenes with multiple carbon-carbon double bonds (poly-enes):



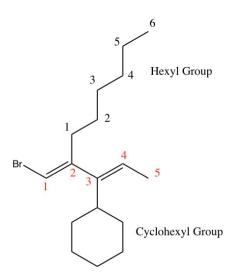

- 1) Find the longest chain containing the maximum number of double bonds.
- 2) Start numbering such that the first doubly bonded position would have the lowest number possible
- 3) Write out the full name. Number the substituents according to their position in the chain and list them alphabetically.




3E-1-bromo-5-methyl-2,4-hexadiene 1-methyl-1,3-cyclopentadiene

### Other examples:

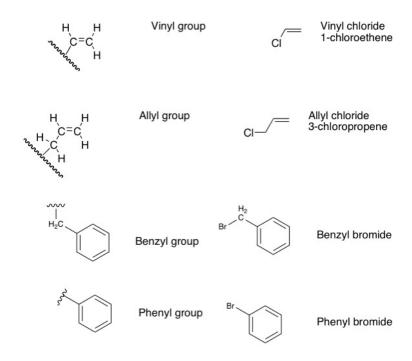



It is therefore (E)-1-bromo-1,3,5,7-cyclooctatetraene



1,3-pentadiene (trans) = (E)-1,3-pentadiene

1,3-pentadiene (cis) = (Z)-1,3-pentadiene


10

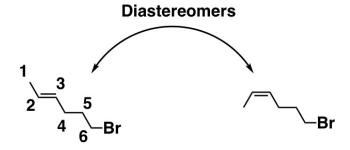


1E,3E-1-Bromo-3-cyclohexyl-2-hexyl-1,3-pentadiene

**Note**: Carbons attached to double and triple bonds are depicted as additional carbon-carbon bonds in the representations above.

### **Special Nomenclature of Common Groups:**




Note: phenyl bromide is commonly called bromobenzene

### Nomenclature of Alkynes (also known as acetylenes)

### Rules:

- Find longest chain with max number of multiple bonds
- Number from end to give 1st <u>multiply</u> bonded position the lowest number
- Drop "ane" and add "yne"
- For multiple triple bonds, drop "ne" and add "diyne"," triyne", etc.
- Halides and alkyl substituents take lower priority than double or triple bon

### **Example 1: 6-Bromo-2-hexene (or 6-Bromohex-2-ene)**



trans-6-Bromo-2-hexene cis-6-Bromo-2-hexene

In the cis isomer, the two higher priority groups on either side of the carbon-carbon double bond are pointing in the same direction.

**Rule** – if you have more than one double bond, then you add a prefix 2 di-, 3 tri-, 4 tetra-

### E, Z - Nomenclature

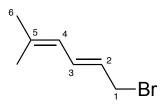
E - Entegegen - Opposite

Z - Zusammen - Together

Naming based on atomic number, similar process to identifying S/R stereochemistry

### Example 1: 1-bromo-1-fluoro-1-propene

- compare the atomic no. of the adjacent atoms.

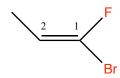

Compare the **left** side of the C=C bond

(Z)-1-bromo-1-fluoro-1-propene

Compare the right side of the C=C bond

(E)-1-bromo-1-fluoro-1-propene

### **Example 2: (two double bonds)**

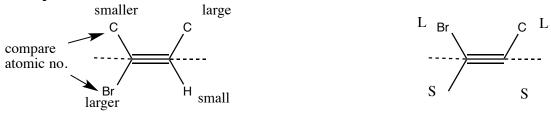



trans-1-bromo-5-methyl-2,4-hexadiene trans-1-bromo-5-methylhexa-2,4-diene

**Example 3: 1-Bromo-1-fluoro-1-propene** 



1-bromo-1-fluoropropene




### 1-bromo-1-fluoropropene

Question: Are the compounds above the same?

Answer: No, they are diastereomers and we can differentiate them by using the E and Z nomenclature

### **Example 2: 2-bromo-2-butene**



Large groups are on opposite sides on the C=C  $\rightarrow$  E E-2-bromo-2-butene

Z-2-bromo-2-butene

### Example 3: 1,3-dibromo-1-fluoro-2-methyl-1-propene

$$\begin{array}{c} & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & &$$

Therefore the name is: (Z)-1,3-dibromo-1-fluoro-2-methyl-1-propene

**Note:** If you cannot decide on basis of atomic number of atoms directly attached to double bond, go to the next set of atoms until a higher atomic number is found

### Example 4:

1-E-1-bromo-1-iodo-2-(bromomethyl)-1-hexene

Iodine is on the opposite side to the bromomethyl (highest priority groups on either side of the alkene) and so the stereochemistry is deemed E